

Introduction

This is a demo show-casing how to document a Python library with
Sphinx [https://www.sphinx-doc.org] and MyST [https://myst-parser.readthedocs.io], including the library’s public API via drop-in
replacements for Sphinx’s built-in Autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html] and Autosummary [https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html]
extensions. It uses Markdown [https://myst-parser.readthedocs.io/en/latest/syntax/syntax.html] in its hand-written documents as well
as for the doc-strings embedded with the library code.

We want to see here how Sphinx+MyST stacks up against the Sphinx-only
approach: demo-Sphinx-autodoc [https://demo-Sphinx-autodoc.readthedocs.io].

[image: GitHub repo] [https://github.com/john-hen/demo-MyST-docstring]

Overview

Pretend this is the tutorial that gives a general introduction to the
library, providing usage examples and all that.

This is a stand-alone document, in this case a file named overview.md
inside the project’s docs folder. So it is separate from the actual
Python library in the, unimaginatively named, package folder. Both
folders are right underneath the project’s root in the repo.

We have set up the API documentation as a different chapter. It
is also a stand-alone document, named api.md, and is linked in the
side bar on the left. Readers can go there to understand how the library
is to be used in application code. That is, it documents the public
API. Not every doc-string defined in package needs to show up there,
only the ones that are important. So we kick things off with a general
summary of the top-level objects, courtesy of the MyST-summary extension
(a modified version of Sphinx’s Autosummary [https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html]) extension, which links to
in-depth API documentation provided by MyST-docstring (derived from
Autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html]).

We can then link to objects from the API documentation, such as
Class1 or action. The syntax is
{any}`Class1` and {any}`action <package.action>` (as the
latter reference happens to be ambiguous). This is the MyST-Markdown way
of referring to the Sphinx role any, which then basically looks in
any place to resolve the reference. Alternatively [https://myst-parser.readthedocs.io/en/latest/sphinx/use.html#use-sphinx-ext-autodoc-in-markdown-files], we
can write [`Class1`](Class1) and [`action`](Class2.action) to
create links to Class1 and action with
a more Markdownian syntax.

Some people like to document the API within the general documentation
as they go along. So instead of just referring to Class1, they
pull in its doc-string somewhere in the text:

	
class Class1

	This is the first line in the doc-string of Class1.

It is part of module classes.

	
action(do='nothing')

	This is a method of Class1.

Intersphinx [https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html] is configured just like it is without MyST, so that we
get short-hand link targets to external documentation, like to Python’s
pathlib [https://docs.python.org/3/library/pathlib.html#module-pathlib] module with [`pathlib`](python:pathlib).

As opposed to reST, we can nest mark-up inside link text, like a
literal [https://example.org]. No Markdown parser has ever had a
problem with that.

First steps

This is a section inside the Overview chapter. We have marked it as
a possible link target by putting (first-steps)= right above the
section header. MyST would also generate anchors [https://myst-parser.readthedocs.io/en/latest/syntax/optional.html#auto-generated-header-anchors]
automatically, for sections up to a given level, if we specify e.g.
myst_heading_anchors = 2 in conf.py.

Here is a code example:

from package.classes import Class1

class1 = Class1()
class1.action()

We used triple back-ticks (```) to mark the code block. We could
also use triple colons (:::) if we add myst_enable_extensions = ['colon_fence'] to the configuration.

MyST has nothing to do with the syntax highlighting. It works just like
with Sphinx alone, and as such is defined by the theme, here Furo [https://pradyunsg.me/furo].
Click the icon at the top right of the page to switch between dark and
light mode and notice how the highlighting changes along with it. We
could easily replace Furo with any of a number of Sphinx themes [https://sphinx-themes.org].

API

This is the front page for the API documentation. It uses a modified
version (“MyST-summary”) of the built-in Sphinx extension Autosummary [https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html],
which creates an overview page that links to individual pages created by
a modified Autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html] extension (“MyST-docstring”).

	action

	This is the first line in the doc-string of function action.

	actions

	This is the first line in the doc-string of module actions.

	classes

	This is the first line in the doc-string of module classes.

action

	
action(do='something')

	This is the first line in the doc-string of function action.

It is defined in module actions.

actions

This is the first line in the doc-string of module actions.

We can reference other objects, such as Class1 and Class2.
We can link back to one of the main documents as a whole, for example
Overview, or a specific section. We can
create external cross-references like to Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]
thanks to the Intersphinx [https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html] extension.

And we can have highlighted code examples:

from package import action
from package import Class1

action(do='whatever')
class1 = Class1()
class1.action()

Sphinx created this page from a “stub” file named package.actions.md
in the api folder underneath docs. As you can tell from clicking
“Show Source” at the bottom of this very page, it contains very little:

actions

```{automodule} package.actions
```


Autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html] takes care of the rest and fills in the blanks, pulling in
signatures and doc-strings from the package’s source code. Autosummary [https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html]
would even create these stubs automatically, unless we tell it not to.
We can also look at the source code of the action function, of this
whole module in fact, if we click on the [source] link on the right,
which is there courtesy of the Viewcode [https://www.sphinx-doc.org/en/master/usage/extensions/viewcode.html] extension.

	
action(do='something')

	This is the first line in the doc-string of function action.

It is defined in module actions.

classes

This is the first line in the doc-string of module classes.

Here’s a link to the more interesting module actions.

	
class Class1

	This is the first line in the doc-string of Class1.

It is part of module classes.

	
action(do='nothing')

	This is a method of Class1.

	
class Class2

	This is the first line in the doc-string of Class2.

It is also part of module classes.

	
action(do=None)

	This is a method of Class2.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 package	

 	
 	
 package.actions	

 	
 	
 package.classes	

Index

 A
 | C
 | M
 | P

A

 	
 	action() (Class1 method)

 	(Class2 method)

 	(in module package)

 	(in module package.actions)

C

 	
 	Class1 (class in package.classes)

 	
 	Class2 (class in package.classes)

M

 	
 	
 module

 	package.actions

 	package.classes

P

 	
 	
 package.actions

 	module

 	
 	
 package.classes

 	module

 nav.xhtml

 Table of Contents

 		
 Introduction

_static/plus.png

_static/file.png

_static/minus.png

